Coherence for Invertible Objects and Multi-graded Homotopy Rings
نویسنده
چکیده
We prove a coherence theorem for invertible objects in a symmetric monoidal category. This is used to deduce associativity, skewcommutativity, and related results for multi-graded morphism rings, generalizing the well-known versions for stable homotopy groups.
منابع مشابه
Homotopy Categories, Leavitt Path Algebras, and Gorenstein Projective Modules
For a finite quiver without sources or sinks, we prove that the homotopy category of acyclic complexes of injective modules over the corresponding finite-dimensional algebra with radical square zero is triangle equivalent to the derived category of the Leavitt path algebra viewed as a differential graded algebra with trivial differential, which is further triangle equivalent to the stable categ...
متن کاملHochschild Cohomology and Moduli Spaces of Strongly Homotopy Associative Algebras
Motivated by ideas from stable homotopy theory we study the space of strongly homotopy associative multiplications on a two-cell chain complex. In the simplest case this moduli space is isomorphic to the set of orbits of a group of invertible power series acting on a certain space. The Hochschild cohomology rings of resulting A∞-algebras have an interpretation as totally ramified extensions of ...
متن کاملSome Algebraic Applications of Graded Categorical Group Theory
The homotopy classification of graded categorical groups and their homomorphisms is applied, in this paper, to obtain appropriate treatments for diverse crossed product constructions with operators which appear in several algebraic contexts. Precise classification theorems are therefore stated for equivariant extensions by groups either of monoids, or groups, or rings, or rings-groups or algebr...
متن کاملPull-in behavior analysis of vibrating functionally graded micro-cantilevers under suddenly DC voltage
The present research attempts to explain dynamic pull-in instability of functionally graded micro-cantilevers actuated by step DC voltage while the fringing-field effect is taken into account in the vibrational equation of motion. By employing modern asymptotic approach namely Homotopy Perturbation Method with an auxiliary term, high-order frequency-amplitude relation is obtained, then the infl...
متن کاملHomotopy Theory of Simplicial Abelian Hopf Algebras
We examine the homotopy theory of simplicial graded abelian Hopf algebras over a prime field Fp, p > 0, proving that two very different notions of weak equivalence yield the same homotopy category. We then prove a splitting result for the Postnikov tower of such simplicial Hopf algebras. As an application, we show how to recover the homotopy groups of a simplicial Hopf algebra from its André-Qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013